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Abstract

Scientific information extraction is a crucial step for understanding scientific publications. In

this paper, we focus on scientific keyphrase extraction, which aims to identify keyphrases

from scientific articles and classify them into predefined categories. We present a neural

network based approach for this task, which employs the bidirectional long short-memory

(LSTM) to represent the sentences in the article. On top of the bidirectional LSTM layer in

our neural model, conditional random field (CRF) is used to predict the label sequence for

the whole sentence. Considering the expensive annotated data for supervised learning

methods, we introduce self-training method into our neural model to leverage the unlabeled

articles. Experimental results on the ScienceIE corpus and ACL keyphrase corpus show

that our neural model achieves promising performance without any hand-designed features

and external knowledge resources. Furthermore, it efficiently incorporates the unlabeled

data and achieve competitive performance compared with previous state-of-the-art

systems.

Introduction

With the explosive increase of scientific publications, it is important for users to better under-

stand the key ideas of the articles. Keyphrases are usually regarded as phrases that represent

the salient concepts of a document [1], and provide users with valuable information. The sci-

entific keyphrases identification and classification is motivated by the increasing demand for

efficiently finding relevant scientific publications and automatically understanding the key

information of those publications, and it has received much academic interest over the past

years [2–6]. Furthermore, it is also an important prerequisite task for downstream applica-

tions, such as summarization, information retrieval and question-answering.

Scientific information extraction, including keyphrase and semantic relation extraction, is a

curial step for understanding scientific publications. SemEval 2017 has organized a shared task

on scientific information extraction (ScienceIE) [6]. The benchmark dataset consists of
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scientific articles in the Computer Science, Material Sciences and Physics domains, and the

keyphrases in this dataset are annotated with three categories: TASK, PROCESS and MATE-

RIAL. One annotated example in this dataset is illustrated in Fig 1. Gupta and Manning (2011)

[7] introduced a human-annotated dataset containing abstracts from the ACL anthology. The

keyphrases with three categories (DOMAIN, TECHNIQUE and FOCUS) are annotated in this

corpus. These annotated datasets allow us to employ supervised machine learning methods for

scientific keyphrase extraction.

Most studies have been conducted on keyphrase extraction [8]. On one hand, unsupervised

methods, such as TF-IDF [9] based ranking method, achieve comparable performance in this

task [10, 11]. On the other hand, various supervised learning methods, such as support vector

machines (SVMs), are used to identify keyphrases [6, 12]. However, these systems need to pay

much attention on feature engineering efforts.

Recently, deep learning has been widely used in natural language processing (NLP) [13–

16], and it brings hope to reduce manual feature engineering in various tasks. Compare with

hand-designed features and traditional discrete feature representation, it provides a different

way to automatically learn dense features representation for text, such as words, phrases and

sentences. Our method follows this line and builds the neural model based on the bidirectional

long short-memory (LSTM) and conditional random field (CRF). The input word representa-

tion of our model is computed based on the word embeddings, part-of-speech (POS) embed-

dings and dependency embeddings.

However, the success of these supervised learning methods relies on large amounts of anno-

tated data. The number of training instances of this task is limited and it is expensive to anno-

tate much more data for supervised training of neural network models. As we know, there are

massive unannotated scientific publications, which are publicly available. In this paper, we

introduce self-training methods to the neural model to take advantage of these unlabeled sci-

entific articles. We first train the model with the original training data, and label the unanno-

tated text using this model. The high confidence data with the predicted label is selected into

the training set. Then we retrain the model using the new training data. The self-training

method repeatedly perform the above process, and a number of data is selected into the train-

ing set to improve the performance.

We evaluate our models on the SemEval 2017 ScienceIE corpus and ACL keyphrase corpus.

Standard evaluation demonstrates that our neural model can achieve promising performance

for scientific keyphrase extraction without any hand-designed features and external knowledge

resources. In addition, our model with self-training method can efficiently utilize unlabeled

data, and achieve competitive performance compared with other state-of-the-art systems.

Fig 1. Keyphrases annotated in the ScienceIE corpus.

https://doi.org/10.1371/journal.pone.0232547.g001
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Related work

Keyphrase extraction

Previous works on keyphrase extraction usually focus on documents in different domains,

including news [17], scientific [4], meeting transcripts [10] and web text [18, 19]. The methods

used for keyphrase extraction fall into two lines: supervised learning and unsupervised

learning.

In the supervised learning research line, keyphrase extraction is formalized as a classifica-

tion problem. These works first extract candidate phrases using some heuristic rules, and then

train a classification model to predict whether a candidate phrase is a keyphrase or not. Differ-

ent features have been used for this task [2, 20–22], including frequency features (e.g. TF-IDF),

position features, structural features, syntactic features and external resource-based features.

In the unsupervised learning research line, it is usually formalized as a ranking problem.

The kayphrases are usually ranked based on the TF-IDF [10, 23, 24] and term informativeness

[25]. Besides the frequency information, more statistic and context information [26] has

shown the importance in this task. Graph-based ranking is also widely used in unsupervised

methods [17, 27]. It aims to build a graph and rank its nodes, which represent candidate key-

phrases, according to their importance. Following this approach, topic information [28, 29],

semantic information from knowledge bases [30, 31] and pretrained word embeddings [32,

33] have been incorporated into the graph-based ranking model to improve the performance.

Due to the lack of human-annotated corpus, previous work on scientific information

extraction is limited. Gupta and Manning (2011) [7] introduced a dataset of scientific abstracts

annotated with the three categories. Pattern-based bootstrapping approach is used to automat-

ically extract these keyphrases. Tsai et al. (2013) [34] incorporated hand-designed features into

unsupervised bootstrapping framework to improve the performance.

Scientific information extraction has attracted much attention in recent years, and it

becomes the focus of SemEval 2017 Task10. This task includes three subtasks: keyphrase iden-

tification, keyhprase classification and relation extraction between keyphrases. It releases the

ScienceIE dataset, and provides a benchmark to evaluate the system performance on this task.

In this paper, we focus on kephrase extraction, including keyphrase identification and classifi-

cation. Similar to named entity recognition (NER), we formalize keyphrase extraction as a

sequence labelling problem.

Deep learning

Deep neural networks, especially recurrent neural networks (RNN) [35] and LSTM-RNN [36]

have been successfully used for the sequence labelling task. Collobert et al. (2011) [13] pro-

posed a unified neural network framework, and performed various sequence labelling tasks,

including POS-tagging, NER and chunking, simultaneously. Huang et al. (2015) [37] used

hand-crafted features with LSTMs to improve the NER performance. The bidirectional

LSTM-RNN combined with CRFs have been widely used in NER [37–40], and achieve promis-

ing performance.

Word2Vec [41] and GloVe [42] are effective algorithms for learning word representations

to capture syntactic and semantic features for words. Recently, pre-trained language models

with context, such as ELMo [43], BERT [44] and XLNet [45], have shown great power in the

semantic representation of text, and achieved excellent performance in various NLP

applications.

In scientific keyphrase extraction subtask of SemEval 2017 Task 10, top three systems all

used RNN-based methods [46, 47]. On the top of the RNN layer, CRFs [48], which jointly
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model the label sequence, performed better compared to the softmax layer. Alzaidy et al.
(2019) [49] explored a Bi-LSTM-CRF neural model, that captures long distance semantic

information, for keyphrase extraction from scientific articles. Our work is related to the line

and introduces self-training method to the neural model to leverage unlabeled scientific

articles.

Methods

Label schemes for NER

We introduce the label scheme used for this task in this section. Following previous works on

NER, we use the BILUO label scheme, which has been widely used for NER, for our task in

this paper.

B and L are used to label the beginning and end word of the keyphrase. U indicates the one-

word keyphrase. I and O are used to label the the inside and outside words of the keyphrase.

Meanwhile, suffix is added to represent the category of the keyphrase, such as PROCESS,

MATERIAL and TASK. One example using the BILUO label scheme is shown in Fig 2.

BLSTM-CRF model

Our method utilizes the bidirectional LSTM (BLSTM) and CRF for scientific keyphrase extrac-

tion. Fig 3 illustrates the BLSTM-CRF model used for this task. It first gets the word

Fig 2. One example using the BILUO label scheme. Sentence 1 comes from the ScienceIE corpus.

https://doi.org/10.1371/journal.pone.0232547.g002

Fig 3. Overview of the BLSTM-CRF model.

https://doi.org/10.1371/journal.pone.0232547.g003
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representation by concatenating word embeddings, POS embeddings and dependency embed-

dings. Then the Bi-LSTM layer takes the word representation as input and generate more com-

plex features for the input sentence. Finally, CRF is added to predict the label sequence for the

sentence. The BILUO label scheme mentioned in the above section is used to form the label

sequence.

Word embeddings, which are trained from large scale raw corpus, can capture semantic

information of the word. They are commonly used in the neural network models and give a

continuous feature vector to represent the word. Given an input sentence s = {w1, w2, . . ., wn},

the word embedding lookup table function is used to get the word embedding ei for each word

wi.

Not only the word itself, but also the POS information and the dependency information of

the word helps to extract keyphrases from the text. Similar to the word embeddings, the model

uses the POS embedding and dependency embedding lookup table functions to get the POS

representation pi and dependency representation di for each word wi, respectively. Based on

these embeddings, we get the word representation xi = ei�pi�di for each word wi.

Then the input representation {x1, x2, . . ., xn} is fed into the Bi-LSTM layer, and the LSTM

layer outputs more complex feature representations for the input sequences. The LSTMs per-

form well at capturing long range information, and bidirectional LSTM is introduced to incor-

porate the past and future information in the sequence data.

Formally, the left LSTM generates the feature representation ~hi for each xi by processing the

input representation {x1, x2, . . ., xn} from left to right. In the similar way, the right LSTM gen-

erates the feature representation hi

 

from right to left. Then we obtain the final feature represen-

tation hi through the hidden layer:

hi ¼ tanhðW1½
~hi � hi

 

� þ b1Þ
ð1Þ

where� denotes the concatenation between two vectors.

Finally, we get the feature representation h = {h1, h2, . . ., hn} for the sentence s, use the CRF

to predict the label sequence y.

The input sentence s = {w1, w2, . . ., wn} corresponds to a matrix Z 2 Rn×l, where n is the size

of the input sequence, and l is the number of labels. Given sentence s, Zi,j denotes the score of

the word wi with the j-th label. The score of an output sequence y is defined by:

Sðs; yÞ ¼
Xn

i¼0

ðZi;yi
þ Tyi� 1 ;yi

Þ ð2Þ

where yi is the label for the word wi, and Tyi� 1 ;yi
represents the transition score from the label

yi−1 to yi.
Then the conditional probability of the sequence y is defined by:

PðyjsÞ ¼
expðSðs; yÞÞ

P
y0 2YðsÞexpðSðs; y

0
ÞÞ

ð3Þ

where Y(s) is the set which contains all the possible label sequences of the sentence s.
Given the sentence s, the decoding process aims to find the label sequence with the highest

score in Y(s).

Self-training method

Most keyphrase extraction systems employ supervised machine learning method and achieve

promising performance. Since the number of training instances in this task is limited and
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annotating more data is expensive, semi-supervised learning methods, which can utilize the

annotated data and unannotated data, provide a possible way to improve the performance. To

take advantage of the unannotated data, we apply self-training method to the neural model.

The details of our method is illustrated in Algorithm 1.

Algorithm 1 Self-training Method
Input: Training Set L, Unlabeled Data U, Confidence Set C, Probability
Threshold p
Output: Model Parameters Θ
1 Parameters Θ Initialization
2 for i = 1 . . . T do
3 Training the model modeli using training set L
4 Predict the unlabeled data set U using modeli
5 for each instance s in U do
6 if P(y|s)>p then
7 C  e
8 end if
9 end for
10 U = U − C
11 L = L[Cl; Cl is the labelled set using Modeli
12 C = �

13 end for
14 return Model Parameters Θ

The basis of the self-training method is the BLSTM-CRF model. The model parameters and

the training process in Line 3 are the same as the neural model. In each iteration, we first train

the model using the training set, and then select the confidence set from the unlabeled data

according to the probability of the instance. The probability is given by the trained model

using the Eq 3. The instance with the probability higher than the threshold p is added into the

confidence set. The selected confidence set with the label given by the trained model is add to

training set, and the new training set will be used in the next iteration.

As described in Algorithm 1, the selection of the confidence set C is the key factor that affect

the performance of self-training method, and how to measure the confidence of a tagging

sequence is crucial to our method. Despite the conditional probability P(y|s) described in Eq 3,

we further investigate the following two metrics to measure the confidence of the tagging

sequence y:

Confidence1ðyjsÞ ¼ PðyjsÞ � N ð4Þ

Confidence2ðyjsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
PðyjsÞN

p
ð5Þ

where N is the length of sentence s and P(y|s) is the conditional probability of the sequence y.

Training

The BLSTM-CRF model consists of the neural network layers and the CRF layer, and we will

explain the training details of BLSTM-CRF network.

Given the training set fxi; yig
M
i¼1

, the max likelihood training objective is formally by

SðYÞ ¼
1

M

XM

i¼1

logPðyijxiÞ þ
l

2
k Yk2 ð6Þ

where xi is an input sentence and yi is the corresponding golden label sequence. P(yi|xi) is the

probability of the golden label sequence as defied in Eq 3. λ is the regularization parameter and

Θ denotes all model parameters of the model.
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AdaGrad [50] algorithm is employed to update the parameters of our model.

Experiments

Experimental settings

Data and evaluation. We evaluated scientific keyphrase extraction task on two publicly

available datasets: ScienceIE corpus provided by SemEval 2017 Task 10 (https://scienceie.

github.io/) and ACL keyphrase corpus (https://nlp.stanford.edu/pubs/FTDDataset_v1.txt).

The ScienceIE corpus consists of 500 scientific paragraphs, which come from three different

domains. These paragraphs are annotated with keyphrase in three categories: TASK, PRO-

CESS, MATERIAL. The dataset is split into three parts, namely 350 notes for training, 50 notes

for development and 100 notes for testing. On the other hand, the ACL keyphrase corpus con-

sists of 462 scientific abstracts, and the human-annotated keyphrases in this corpus contain

three categories: DOMAIN, TECHNIQUE and FOCUS. We split this dataset into three parts,

namely 370 abstracts for training, 46 abstracts for development and 46 abstracts for testing.

Table 1 shows the statistics of the two datasets used in the experiments.

According to the source and domains of the ScienceIE dataset, we crawled the unannotated

scientific articles in the same three domains (CS, MC and Ph) from ScienceDirect (https://

www.sciencedirect.com/) for self-training method. We randomly select 24,030 abstracts as the

unannotated dataset from the website, and this dataset contains 156,459 sentences. For the

ACL keyphrase corpus, we use the document collection from the ACL Anthology dataset as

the unannotated dataset (https://acl-arc.comp.nus.edu.sg/archives/acl-arc-090501d1/data/txt/)

[51]. This dataset contains 7,586 abstracts and 47,718 sentences.

Commonly used precision (P), recall (R) and F1 are used as evaluation metrics.

Pre-processing. Since our neural model takes the word embeddings, POS embeddings

and dependency embeddings as the input representation, we use the Stanford CoreNLP library

[52] to preprocess the raw text in the corpus, and get the tokenization, POS-tagging and

dependency parsing information. Our neural models are implemented based on the LibN3L

[53] package.

Post-processing. Many keyphrases, especially their first letters, often appear in the upper-

case form in scientific articles, and the uppercase features helps to recognize the keyphrases.

To improve the performance of our neural model, we apply a simple heuristic rule to the out-

put of the neural model.

Our neural model outputs the keyphrases in the document, along with their categories and

indexes. If one keyphrase contains the capital letter, we label all this phrase occur in the docu-

ment as the keyphrase.

Hyper-parameter settings. We have tuned the hyper-parameters in our neural models on

the development set. The hyper-parameters mainly include two parts. One is the structure

Table 1. Statistics of the datasets.

Training Dev Test

ScienceIE

Sentences 2403 399 851

Keyphrases 6721 1154 2051

ACL

Sentences 2159 283 272

Keyphrases 2999 389 392

https://doi.org/10.1371/journal.pone.0232547.t001
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definition of the neural network, including the size of different embeddings and the size of

each hidden layer. The other part includes the hyper-parameters used in the training process.

We use GLOVE word embeddings [42] for our word embeddings initialization, and the

dimension of word embeddings is 300. POS embeddings and dependency embeddings are

randomly initialized and their dimension is set to 25. These randomly initialized embeddings

are fine-tuned in the training process of our model, while the pre-trained word embeddings

are not fine-tuned in our experiments.

To alleviate the overfitting problem in the training process, the dropout [54] method is

applied to our neural model. When the dropout method is used, the F1 score of our model is

improved by 5.9% on ScienceIE corpus and 3.6% on ACL corpus. Table 2 lists the details of

these hyper-parameters.

Baselines. The following baselines are used for system comparison in our experiments:

• BLSTM-CRF: The bidirectional LSTM combined with CRFs have been successfully used in

the sequence labelling task, and achieve promising performance. Alzaidy et al. (2019) utilized

this model and their results showed that it substantially outperformed some strong baselines

and previous methods for keyphrase extraction.

• BERT: BERT is designed to pretrain deep bidirectional representations by jointly condition-

ing on both left and right context [44]. It has achieved state-of-the-art results in various NLP

applications, including NER. Our BERT-based keyphrase extraction system is implemented

based on an open source project NER-BERT-pytorch (https://github.com/lemonhu/

NER-BERT-pytorch). The code of our BERT-based baseline is available at https://github.

com/RingoTC/BERT-NER-ScienceIE.

Results

Effects of the heuristic rule. Table 3 shows the performance of BLSTM-CRF model with

and without the heuristic rule. BLSTM-CRF-H represents the BLSTM-CRF model using the

heuristic rule.

Applying the heuristic rule to the output of our BLSTM-CRF model improves the F1 score

from 43.7% to 45.1% on the ScienceIE corpus. It indicates that the heuristic rule helps the

Table 2. Hyper-parameter settings.

Type Hyper-parameter

probability threshold p 0.8

Initial learning rate 0.01

Regularization parameter 10−8

dropout rate 0.4

Dim(emb(word)) 300

Dim(emb(POS)), Dim(emb(DEP)) 25

Hidden layer size 100

https://doi.org/10.1371/journal.pone.0232547.t002

Table 3. Effects of the heuristic rule.

Models ScienceIE (P/R/F1) ACL (P/R/F1)

BLSTM-CRF 47.4/40.5/43.7 40.7/31.4/35.4

BLSTM-CRF-H 47.3/43.1/45.1 39.9/31.4/35.1

https://doi.org/10.1371/journal.pone.0232547.t003
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model to recognize more keyphrases. Especially, the use of this rule helps to improve the recall

of the model. It improves the recall of the neural model from 40.5% to 43.0%, while their preci-

sions are almost the same (47.3% vs 47.4%). This is reasonable since tokens with uppercase let-

ters are often proper nouns or abbreviations for specific terms. These words are often

keyphrases in the document.

However, this heuristic rule does not help to improve the performance on the ACL corpus.

The likely reason is that the ACL test set contains less keyphrases than the ScienceIE corpus,

and there are few cases that satisfy this heuristic rule. Thus, we will not apply the heuristic rule

to the BLSTM-CRF model on the ACL corpus in the following experiments.

Self-training method. Furthermore, we introduce self-training method to the neural

model to leverage the unannotated data. It selects instances with high confidence from the

unlabeled data set, and adds them into the training set.

Despite the conditional probability P(y|s), different confidence functions described in Eqs 4

and 5 are investigated in the experiments. The baseline neural model used for the ScienceIE

corpus is the BLSTM-CRF model with the heuristic rule, while the BLSTM-CRF model with-

out the heuristic rule is used for the ACL corpus.

When different confidence functions are used in the self-training method, their F1 scores

are very close. According to the results listed in Table 4, we choose the conditional probability

P(y|s) as the confidence function for the ScienceIE corpus, and
ffiffiffiffiffiffiffiffiffiffiffiffi
PðyjsÞN

p
is used for the ACL

corpus.

The increase of the training data helps to extract scientific keyphrases. When the self-train-

ing method is applied to the BLSTM-CRF model using heuristic rule, it improves the F1 score

from 45.1% to 45.7% on the ScienceIE corpus. Considering the ACL corpus, it improves the

F1 score of the BLSTM-CRF model from 35.4% to 37.3%.

Effects of embeddings. Considering the input layer of our neural model, it gets the input

word representation by concatenating word embeddings, POS embeddings and dependency

embeddings. To study the effects of POS and dependency embedding, we conduct ablation

test to show the impact of these embeddings. The baseline model is the BLSTM-CRF model.

Table 5 shows the results of the ablation test on the ScienceIE and ACL corpus.

From the Table 5, we can see that both POS embedding and dependency embeddings con-

tribute to the scientific keyphrase extraction. Compared with the model without these embed-

dings, the system performs slightly better on the ScienceIE corpus. Consider the ACL corpus,

Table 4. Effects of the self-training method.

Models ScienceIE (P/R/F1) ACL (P/R/F1)

Baseline 47.3/43.1/45.1 40.7/31.4/35.4

P(y|s) 49.2/42.6/45.7 42.6/30.6/35.6

P(y|s)�N 48.6/43.2/45.7 45.0/29.6/35.7
ffiffiffiffiffiffiffiffiffiffiffiffi
PðyjsÞN

p
N 48.6/42.9/45.6 45.4/31.6/37.3

https://doi.org/10.1371/journal.pone.0232547.t004

Table 5. Ablation test for different embeddings.

Models ScienceIE (P/R/F1) ACL (P/R/F1)

BLSTM-CRF 47.4/40.5/43.7 40.7/31.4/35.4

No Pos embeddings 48.2/39.2/43.2 40.9/29.3/34.2

No dependency embeddings 47.6/39.9/43.4 41.5/28.6/33.8

https://doi.org/10.1371/journal.pone.0232547.t005
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the BLSTM-CRF model outperforms the model without the POS or dependency embeddings,

with the improvement of 1.2% and 1.6%, respectively.

In addition to the word information itself, incorporating POS and dependency information

into the BLSTM-CRF model has the potential to improve the performance. For example,

BLSTM model can recognize “[main/JJ corrosion/NN products/NNS]” as the Material key-

phrase, while it can not extract this keyphrase without its POS information. Its POS informa-

tion helps to improve the performance of the BLSTM-CRF model.

Comparison with previous systems. Tables 6 and 7 show the results of our model on the

ScienceIE and ACL corpus respectively, together with previous state-of-the-art performance

systems for comparison.

Gupta [7] and Tsai [34] are unsupervised learning methods. Gupta uses pattern-based boot-

strapping approach for automatic keyphrase extraction, and Tsai incorporates hand-designed

features into unsupervised bootstrapping framework. AI2 [46] is the best system participating

in SemEval 2017 scientific keyphrase extraction task. It employs neural networks and CRFs for

this task, and adds scientific terms from external resources as features. Luan et al. (2017) [55]

has achieved the best keyphrase extraction performance on ScienceIE corpus, and it introduces

inductive and transductive semi-supervised learning to the neural tagging models.

From the Table 6, we can see that the performance of the supervised learning and semi-

supervised learning methods is much higher than the performance of the unsupervised learn-

ing methods on the ScienceIe corpus. The human-annotated data allows the use of supervised

learning and semi-supervised learning methods, and helps to improve the scientific keyphrase

extraction task.

Among the 17 teams participating the SemEval 2017 scientific keyphrase extraction subtask,

we find that the BLSTM-CRF based neural networks achieve top performance in this task. The

F1 score of the BLSTM-CRF model used in this paper is slightly lower than that of AI2, which

is the best system participating in SemEval 2017 ScienceIE task. The likely reason is that our

baseline model performs keyphrase extraction without any external knowledge resources and

feature engineering.

Our SL-BLSTM-CRF-H model achieves competitive performance compared with the best

performance systems on the ScienceIE corpus. It achieves 2% and 10.6% improvements of F1

Table 6. Results of our model on the ScienceIE corpus, together with other top-performance systems.

Models F1(%)

Gupta [7] 9.8

Tsai [34] 11.9

AI2 [46] 44

Luan et al. (2017) [55] 46.6

BLSTM-CRF 43.7

BERT 35.1

SL-BLSTM-CRF-H 45.7

https://doi.org/10.1371/journal.pone.0232547.t006

Table 7. Results of our model on the ACL corpus, together with other top-performance systems.

Models F1(%)

BLSTM-CRF 35.4

BERT 31.6

SL-BLSTM-CRF 37.3

https://doi.org/10.1371/journal.pone.0232547.t007
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score over BLSTM-CRF and BERT, respectively. This demonstrates the effectiveness of our Bi-

LSTM-CRF for this task and the importance of character representation. Considering the ACL

keyphrase corpus, our best model SL-BLSTM-CRF outperforms these strong baselines, with

the improvements of 1.9% and 5.7% over BLSTM-CRF and BERT, respectively.

Conclusions

In this paper, we represented the neural network based model for recognizing and classifying

the keyphrases from scientific documents. We employed the state-of-the-art BLSTM-CRF

model for scientific keyphrase extraction. Self-training method, which can leverage the unan-

notated data, was applied to the neural model to improve the performance.

Experiments on the ScienceIE and ACL keyphrase datasets demonstrated the effectiveness

of our models. Without any external knowledge resources and manually feature engineering,

our BLSTM-CRF model achieved comparable performance. When applying self-training

method to the BLSTM-CRF model, it further improved the performance and achieved com-

petitive performance compared with previous state-of-the-art systems.
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